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Abstract: We discuss the numerical modelling of contaminant transport in unsaturated porous media in 3D. The
mathematical model represents water mass balance and conservation of contaminant, which is expressed by cou-
pled non-linear system of parabolic-elliptic equations. Mathematical model for water transport in unsaturated
porous media is represented by Richard?s type equation. Also diffusion of contaminant in matrix could be in-
cluded.
The adsorption isotherms are generally non-linear, containing the tuning parameters underlying to determination.
We determine these parameters by the methods of inverse problems. A successful experiment scenario is sug-
gested to determine the required parameters. Used complex model in 3D requires also determination of dispersion
coefficients. This problem together with suitable experiment scenario is discussed too. The obtained experiments
support our method.
We have discussed the adsorption problem in 1D model before, but preferential streamlines in 1D thin tubes shadow
accurate results in determination of required parameters.
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1 Introduction
We are focused to the the numerical modelling of infil-
tration of contaminated water into unsaturated porous
media and determination of adsorption isotherms. A
coupled system with contaminant transport, disper-
sion and adsorption is considered.

The main contribution is focused to the determi-
nation of adsorption isotherms parameters. The devel-
oped numerical method is a good candidate to solve
corresponding inverse problems. Numerical experi-
ments support our method.

The mathematical model for unsaturated flow
is based on the Richard’s non-linear and degener-
ate equation. The model of contaminant transport is
based on the Fick’s law and the mass balance equa-
tion. Non-linear adsorption is represented by adsorp-
tion isotherms and kinetic rates. A correct numeri-
cal method is constructed in 3D which can be a good
candidate for the solution of inverse problems to de-
termine model parameters in the adsorption part of
the model. Our numerical method is based on flex-
ible time stepping and operator splitting by means of
which we decompose the complex strongly non-linear
system to its natural parts: flow in unsaturated porous
media, transport with diffusion and dispersion of con-

taminant and its adsorption.
Our previously developed numerical model for

1D suffers in practical laboratory experiments from
preferential streamlines appearing, specially, when
applying centrifugation. Experiments with 3D (cylin-
drical samples) yield much more of scenarios by
means of which we reduce the creation of preferen-
tial streamlines.

In series of numerical experiments we demon-
strate the effectiveness of our method and suitable ex-
perimental scenarios enabling relatively simple mea-
surements used in solution of inverse problems.

2 Mathematical Model
2.1 Water Flow
Our sample is a cylinder with radius R and height Z.
We will consider radial symmetrical boundary condi-
tions, therefore we transform the mathematical model
using cylindrical coordinates (r, z). Then the gov-
erning partial differential equation for infiltration (in
gravitational mode) reads as follows

∂tθ(h) =
1

r
∂r(rK(h)∂rh)+∂z(K(h)(∂zh−1)) (1)
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Figure 1: Sample

where the saturation θ, depending on pressure head h,
is of the form

θ(h) = θr + (θs − θr)θef (h), (2)

with irreducible saturation θr, porosity θs and effec-
tive saturation θef (h).

We consider the fundamental saturation-pressure
law in terms of van Genuchten-Mualem empirical
model h ≤ 0 in unsaturated zone

θef (h) =
1

(1 + (αh)n)
1
m

, (3)

where α, n, m = 1− 1
n are soil parameters. In satu-

rated zone we have θef = 1, h > 0.
The hydraulic permeability K = K(h) is in van

Genuchten-Mualem model

K(h) = Ks (θef (h))
1
2 .
(

1− (1− (θef (h))m)
1
m

)2
,

(4)
where Ks (also soil parameter) is a hydraulic perme-
ability for saturated porous media, i.e., Ks = K(0).

The flux in cylindrical coordinates is of the form

q = −(qr, qz)T , (5)

qr = K(h)∂rh, q
z = K(h)(∂zh− β).

The flow model is expressed in the form of
Richard’s equation

∂tθ(h) =
1

r
∂r(rK(h)∂rh) + ∂z(K(h)(∂zh− 1)).

(6)
We note that our model includes both saturated

(elliptic partial differential equation) and unsaturated
(parabolic partial differential equation) zones. We
consider initially (at t = 0) the dry sample h = −∞),
but in the numerical experiments we use h = −200.

The top of our sample Γtop = {r ∈ (0, R), z =
Z} is isolated, i.e., we consider qz = 0 and the same
condition we consider on the part {r ∈ (R1, R), z =
0} of the bottom. Through the part Γout = {r ∈
(0, R1), z = 0} the infiltrated water can outflow to the
collection chamber, i.e. we consider ∂zh = 0 on Γout

in qz (see (5)). The boundary condition on the sample
mantel Γmant = {r = R, z ∈ (0, Z)} reflects the hy-
drostatic pressure generated by water level H(t) ≥ 0
(measured from the top of the sample) at the coordi-
nate 0 ≤ z ≤ Z. Then our boundary condition on
Γmant is

h(t, R, z) = H(t) + (Z − z). (7)

Due to the mass balance argument, the change in
H(t) reflects the infiltration flux through Γmant for
t > 0. Thus, our system is closed by ODE

Ḣ(t) = −Q
∫

Γmant

qz dΓmant, (8)

where Q is the ratio of the areas of Γtop and the cross-
section of inflow chamber. The amount of outflow wa-
ter in the collection chamber is given by

Mout(t) =

∫ t

0

∫
Γout

qz dΓout)dt,

which could be expressed in terms of water level

Hout(t) = Q1Mout(t),

whereQ1 is the ratio of areas Γout of the cross-section
area and collection area of the collection chamber.

Conservation of contamination in water is ex-
pressed (in Cartesian coordinates) in partial differen-
tial equation.

2.2 Contaminant transport in the water
Denote by w the concentration of a contaminant dis-
solved in the water. Its transportation in porous me-
dia is governed by water flux q, molecular diffusion
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Do and dispersion characterized in cylindrical coordi-
nates by the matrix

D̄ =

(
D1,1 D1,2

D2,1 D2,2

)
=(

αL(qr)2 + αT ((qz)2 (αL − αT )(qrqz)
(αL − αT )(qrqz) αL(qz)2 + αT (qr)2

)
1

|~q|
,

(9)
where αL is longitudinal coefficient and αT is
transversal coefficient.

Denote by Qw contaminant flux,

Qwr = −qrw+ θ(D1,1∂rw+D1,2∂zw+Doθ (10)

Qwz = −qzTw + θ(D2,1∂rw +D2,2∂zw +Doθ.
(11)

Then, our mathematical model for contaminant trans-
port with adsorption (in cylindrical coordinates) reads

∂t(θw)−
(

1

r
∂r(rQw

r) + ∂z(Qw
z

)
= −ρ∂tS.

(12)

2.3 Adsorption
The adsorption kinetic is governed by the ODE

∂tS = κ(Ψ(w)− S), (13)

where S represents the adsorbed contaminant by a
unit mass of porous media. Here, κ is the adsorption
rate coefficient and describes the velocity of adsorp-
tion. The mathematical model (13) is a very special
one and all the results obtained here can be easily ex-
tended to other models. The most common isotherms
are Ψ(s) = as (linear); Ψ(s) = asb (Freundlich);
Ψ(s) = as

1+bs (Langmuir); Ψ(s) = asr

1+bsr (Mixed
Freundlich-Langmuir).

2.4 Boundary Conditions
The governing equations are completed by a corre-
sponding boundary and initial conditions. For sim-
plicity we assume that on the boundary the contam-
inant concentration is constant W0 and the contami-
nant is transported by water flow through the mantel
Γmant = {r = R, z ∈ (0, Z)} only. On the sample
bottom part Γout = {r ∈ (0, R1), z = 0} is a cumu-
lated water outflow

Mout(t) =

∫ t

0

∫
Γout

qz dΓout)dt

with the cumulated contaminant outflow

MWout(t) =

∫ t

0

∫
Γout

qz wdΓout)dt.

In solving inverse problems we shall assume the mea-
surements of the time evolution of concentration of
cumulated water outflow OM ,

OM(t) =
MWout(t)

Mout(t)
.

In our numerical experiments we assume the fol-
lowing model data:
θ0 = 0.38, θr = 0, Ks = 2.4 10−4, α = 0.0189,
n = 2.81, g = 981, αL = 1, αT = 1

8 , ρ = 1 and
κ = 0.05, h = −200, W0 = 1, S0 = 0.

We consider the Langmuir adsorption isotherm
with the coefficients a = 2, b = 1. We present the
solution in the following three experiments scenarios,
where the flow boundary conditions are presented be-
fore and the initial conditions will be specified in ex-
periments.

In experiment 1 the infiltrated water concentration
is w = 1. The initial sample saturation is almost zero,
h = −200 and S0 = 0, t ∈ (0, 1500).

In experiment 2 the boundary and initial condi-
tions are the same in t ∈ (0, 200). For t ∈ (200, 1500)
the infiltrating water has concentration w = 0.

In experiment 3 we assume S0 = 0, 5 and the con-
centration of infiltrated waterw = 0 for t ∈ (0, 1500).

3 Numerical realization
We apply in our approximation scheme a flexible time
stepping and a finite volume method in space vari-
ables.

We consider uniform partition of the domain in
numerical experiments with (Nx, Ny) = (31, 31) grid
points (ri, zj) = (i∆r, j∆z), i, j = 0, 1, ..., 30,
∆r = X

Nr−1 ,∆z = Y
Nz−1 .

We approximate the time derivative by back-
wards difference and then we integrate our system
over the angular control volume Vi,j with the corners
ri±1/2, zj±1/2 and with the length (∆r,∆z) of the
edges. Then, our approximation linked with the inner
grid point (ri, zj) at the time t = tk is followed.

θ(h)− θ(hk−1)

τ
∆r∆z

−∆z
ri+1/2

ri

[
K(hi+1) +K(h)

2

(
hi+1 − h

∆r

)]
+ ∆z

ri−1/2

ri

[
K(h) +K(hi−1)

2

(
h− hi−1

∆r

)]
−∆r

[
K(hj+1) +K(h)

2

(
hj+1 − h

∆z
− 1

)]
+ ∆r

[
K(h) +K(hj−1)

2

(
h− hj−1

∆z
− 1

)]
= 0

(14)
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3.1 Quasi-Newton linearisation
In each (ri, zj) we linearise θ in terms of h iteratively
(with iteration parameter l) following [Celia et al., ] in
the following way

θ(hk,l+1)− θ(hk−1)

τ
= Ck,lh

k,l+1 − hk,l

τ
+
θk,l − θk−1

τ
,

where

Ck,l =
∂θk,l

∂hk,l
=

(θs − θr)(1− n)α(αhk,l)n−1(1 + (αhk,l)n)−(m+1)

for hk,l < 0, else Ck,l = 0. We stop iterations
for l = l∗ , when hk,l

∗+1 − hk,l∗ < ε and then we put
hk := hk,l

∗+1. Finally we replace the non-linear term
K(hk) byK(hk,l), and our approximation scheme be-
came linear in terms of hk,l+1.

Generally, we speed the iteration by a special con-
struction of starting point hk,0 ≈ hk−1 and using suit-
able damping parameter in solving corresponding lin-
earised system. Solution of complex system by oper-
ator splitting method. To obtain approximate solution
for contaminant in water and matrix at the time sec-
tion t = tk when starting from t = tk−1 we use the
obtained flow characteristics from t = tk for θk, hk
and ~qk and for matrix D̄k.

3.2 Approximation scheme for contaminant
For w at (ri, zj) for t = tk we obtain by finite volume

θ
w − wk−1

τ
∆r∆z

−∆z

[
1

ri
(ri+1/2Qw

r
i+1/2 − ri−1/2Qw

r
i−1/2)

]
+ ∆r

[
Qwz

j+1/2 −Qw
z
j−1/2)

]
= −∆r∆zρψ(wk−1)− Sk−1),

where ∂zw inQwr in the point {ri+1/2, zj} is approx-
imated by

wi+1,j+1 + wi,j+1 − wi+1,j−1 − wi,j−1

4∆z

and in the point {ri−1/2, zj} we shift i by i−1. Anal-
ogously we approximate ∂rw in Qwz , where the role
of indexes i and j is interchanged. Finally, we have
to approximate the items in the dispersion matrix D
arising in Qwr, Qwz .

We approximate K, ~q and D in middle points by

Ki± 1
2

=
K(hi±1) +K(hi)

2

Kj± 1
2

=
K(hj±1) +K(hj)

2

qr
i± 1

2

=−Ki± 1
2

(
±hi±1 ∓ hi

∆r

)
qz
j± 1

2

=−Kj± 1
2

(
±hj±1 ∓ hj

∆z
− 1

)
qz
i± 1

2

=−Ki± 1
2

(
hi±1,j+1 + hi,j+1 − hi±1,j−1 − hi,j−1

4∆z
−1

)
qr
j± 1

2

=−Kj± 1
2

(
hi+1,j±1 + hi+1,j − hi−1,j±1 − hi−1,j

4∆r

)

D1,1,i± 1
2

=
αL(qr

i± 1
2

)2 + αT (qz
i± 1

2

)2√
(qr

i± 1
2

)2 + (qz
i± 1

2

)2
+ λθi± 1

2

D1,2,i± 1
2

=
(αL − αT )qr

i± 1
2

qz
i± 1

2√
(qr

i± 1
2

)2 + (qz
i± 1

2

)2

D2,2,j± 1
2

= D1,1,i± 1
2

(i↔ j;αL ↔ αT )

D2,1,j± 1
2

= D1,2,i± 1
2

(i↔ j).

3.3 Approximation scheme for adsorption
We apply the same finite volume method and in the
point (ri, zj) at t = tk we obtain

Sk − Sk−1

τ
∆r∆z = ∆r∆zκ(ψ(wk)− Sk−1).

To obtain approximation linked with the boundary
points we apply the same strategy of finite volume
method where the control volume Vi,j is only half or
quoter of the ∆r∆z corresponding to the inner grid
points.

4 Numerical experiments
4.1 Inverse problem: determination of κ, ψ
Measuring the concentration of cumulated outflow
water OM(t) will be the main information source of
adsorption mechanism. We propose the infiltration
scenarios, described by boundary and initial condi-
tions before, which enable us to measure (κ, ψ).

We will focus to Langmuir adsorption isotherm,
where except of κ we have to determine the coeffi-
cients {a, b}. We assume the time interval (0, 1500)
with 31 uniformly distributed time moments {ti}31

1 ,
where we expect measurements of OM(ti). On the
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other hand, we solve our system with some given pa-
rameters p = {a, b, κ} and obtain OMc(ti). Solution
of our inverse problem consists in determination of p
which minimizes the ||{OM(ti)−OMc(ti)}31

1 ||. This
could be realized iteratively using some minimization
software. We use "fminsearch" from Matlab toolbox.

We test the practical applicability of our sug-
gested experiment scenario with efficiency of our nu-
merical method in the following way. We compute
OMc using same "standard" model parameter ps, e.g.,
ps = {2, 1, 0.05}. Then we "forget " ps and instead
we use a starting parameter po in minimization proce-
dure. The optimal solution popt (with respect to some
"tolerance") we compare with our model parameter
ps. Stability and reliability of our method we ver-
ify in series of experiments, where dependence on the
choice of starting parameters and the level of noise
applied to OMc is taken into account.

The convergence of minimization procedure is
strongly linked with expected local minima, which
we test with the change of starting parameters.
To increase the reliability of popt we can ex-
tend the measurements vector OMc ≡ OM

(I)
c to

{OM (I)
c , OM

(II)
c , OM

(III)
c } linked with the solution

of Experiments I-III described before.

Figure 2: Water pressure h, concentration in water w
and adsorbed contaminant S in time t = 330 in exper-
iment 1

Figure 3: Time evolution of concentration of cumu-
lated outflow water in experiment 1

4.2 Results in experiment 1
In the experiment 1 we can see, that contaminant in
water is infiltrating together with water very quickly,
because of negative pressure h. Therefore the concen-
tration of the outflow water is increasing fast. After
350 seconds the cylinder is fully saturated, so water
flow slows down rapidly and contaminant is adsorbed
into the sample. Because of that, concentration of the
water in the collection chamber is increased slower as
we can see in figure 3.

Determination of adsorption coefficients is rela-
tively stable. We obtain error up to 8% with different
noises up to 0.01 and with various starting points as
we can see in table 1.

Table 1: Optimal values of a, b, κ for ps = [2, 1, 0.05]
with noise 0.01 in experiment 1

pstart popt
[1, 0.5, 0.01] [1.9901, 0.9484, 0.04934]

[1, 0.5, 0.01] [1.9319, 0.9398, 0.05069]

[3, 0.5, 0.01] [2.0059, 1.0529, 0.05099]

[3, 0.5, 0.01] [2.0774, 1.0515, 0.04929]

[1, 2, 0.01] [1.9904, 1.0384, 0.05024]

[1, 2, 0.01] [1.9943, 0.9523, 0.04971]

[3, 2, 0.01] [2.0555, 1.0427, 0.04930]

[3, 2, 0.01] [1.9226, 1.0558, 0.04976]

[1, 0.5, 0.1] [1.9303, 1.0381, 0.05010]

[1, 0.5, 0.1] [1.9190, 1.0596, 0.04943]

[3, 0.5, 0.1] [1.9801, 0.9355, 0.04907]

[3, 0.5, 0.1] [1.9697, 1.0707, 0.04982]

[1, 2, 0.1] [1.9493, 1.0306, 0.05079]

[1, 2, 0.1] [1.9372, 1.0650, 0.05028]

[3, 2, 0.1] [1.9214, 0.9552, 0.04981]

[3, 2, 0.1] [2.0414, 1.0373, 0.04969]

4.3 Results in experiment 2
In this experiment, contaminated water is infiltrating
180 seconds. Part of the cylinder is still almost dry,
when we change the boundary condition, where wa-
ter with zero concentration is infiltrated. We can see,
that contaminant is adsorbed into the sample and con-
centration in outflow chamber is increasing, but after
that, uncontaminated water causes desorption in the
sample. It causes decreasing of concentration in out-
flow chamber as we can see in figure 5.

This method is very stable. As we can see in table
2, error of the adsorption coefficients is up to 5% with
different noises up to 0.01 and with various starting
points.
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Figure 4: Water pressure h, concentration in water w
and adsorbed contaminant S in time t = 350 in exper-
iment 2

Figure 5: Time evolution of concentration of cumu-
lated outflow water in experiment 2

Figure 6: Water pressure h, concentration in water w
and adsorbed contaminant S in time t = 330 in exper-
iment 3

Table 2: Optimal values of a, b, κ for ps = [2, 1, 0.05]
with noise 0.01 in experiment 2

pstart popt
[1, 0.5, 0.01] [1.9604, 0.9852, 0.04912]

[1, 0.5, 0.01] [2.0242, 0.9655, 0.05033]

[3, 0.5, 0.01] [2.0790, 1.0039, 0.05058]

[3, 0.5, 0.01] [2.0533, 1.0242, 0.04961]

[1, 2, 0.01] [2.0313, 1.0339, 0.05042]

[1, 2, 0.01] [1.9407, 1.0353, 0.05039]

[3, 2, 0.01] [2.0444, 0.9768, 0.04936]

[3, 2, 0.01] [1.9124, 1.0131, 0.05055]

[1, 0.5, 0.1] [2.0227, 1.0328, 0.05040]

[1, 0.5, 0.1] [1.9208, 1.0081, 0.05056]

[3, 0.5, 0.1] [1.9076, 1.0047, 0.05011]

[3, 0.5, 0.1] [2.0311, 0.9689, 0.04935]

[1, 2, 0.1] [1.9283, 0.9673, 0.04965]

[1, 2, 0.1] [2.0323, 1.0222, 0.04950]

[3, 2, 0.1] [1.9331, 1.0388, 0.05038]

[3, 2, 0.1] [1.9073, 0.9531, 0.04962]

Figure 7: Time evolution of concentration of cumu-
lated outflow water in experiment 3

4.4 Results in experiment 3

In experiment 3 we assume S0 = 0, 5 and infiltrated
water has concentration w = 0. Therefore desorp-
tion happens. When the sharp front of infiltrated water
reaches Γout, concentration of the water in the collec-
tion chamber increases rapidly, because of the desorp-
tion. The adsorbed contaminant in sample is decreas-
ing and therefore concentration of the water in outflow
chamber is decreasing too as we can see in figure 7.

This experiment is not very stable for determina-
tion of adsorption coefficients, because it is very sen-
sitive for measured data. We obtained error up to 15%
with different noises up to 0, 01 as we can see in table
3.
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Table 3: Optimal values of a, b, κ for ps = [2, 1, 0.05]
with noise 0.01 in experiment 3

pstart popt
[1, 0.5, 0.01] [1.8492, 1.1096, 0.05065]

[1, 0.5, 0.01] [2.1265, 0.8877, 0.05052]

[3, 0.5, 0.01] [2.2637, 0.9220, 0.04833]

[3, 0.5, 0.01] [2.2856, 0.9014, 0.04709]

[1, 2, 0.01] [2.0028, 1.0397, 0.05193]

[1, 2, 0.01] [2.2791, 0.9812, 0.05074]

[3, 2, 0.01] [1.7800, 0.9144, 0.04766]

[3, 2, 0.01] [1.7770, 1.0251, 0.05200]

[1, 0.5, 0.1] [1.9064, 1.1218, 0.04914]

[1, 0.5, 0.1] [1.8867, 1.0865, 0.04929]

[3, 0.5, 0.1] [1.9636, 1.1481, 0.05132]

[3, 0.5, 0.1] [1.7279, 0.9413, 0.04992]

[1, 2, 0.1] [1.8213, 1.0419, 0.05116]

[1, 2, 0.1] [1.9776, 1.0960, 0.04753]

[3, 2, 0.1] [2.1859, 1.0165, 0.04844]

[3, 2, 0.1] [1.7631, 0.9642, 0.05070]

5 Conclusion

Numerical experiments demonstrate efficiency of our
numerical method also in more dimensional case us-
ing only non-invasive measurements. The 0, 01 noise
in our measurements effects the 5 − 8% defect with
three adsorption coefficients in experiments 1 and 2.
In the experiment 3 the defect reaches up to 15%.
During series of experiments we have remarked very
low dependence of optimal solution on starting points.
Greater dependence is linked to the type of generated
noise.

We developed efficient numerical method for de-
termination of adsorption coefficients on the base of
finite volume method. Operator splitting method is
used to solve an complex system for water infiltration,
contaminant transport by water including the adsorp-
tion with the matrix.

The 3D experimental scenario significantly de-
crease the influence of preferential streamlines ap-
pearing in 1D laboratory experiments (with thin
tubes).
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